Escherichia coli DNA helicase II (uvrD gene product) catalyzes the unwinding of DNA.RNA hybrids in vitro.

نویسنده

  • S W Matson
چکیده

DNA helicase II is a well-characterized Escherichia coli enzyme capable of unwinding duplex DNA and known to be involved in both methyl-directed mismatch repair and excision repair of pyrimidine dimers. Here it is shown that this enzyme also catalyzes the ATP-dependent unwinding of a DNA.RNA hybrid consisting of a radioactively labeled RNA molecule annealed on M13 single-stranded DNA. The DNA.RNA unwinding reaction required less protein to unwind more base pairs than the corresponding unwinding of duplex DNA. In addition, the rate of unwinding of the DNA.RNA hybrid was more than an order of magnitude faster than unwinding of a DNA partial duplex of similar length. The unwinding of the DNA.RNA hybrid is a property unique to helicase II since helicase I, Rep protein, and helicase IV failed to catalyze the reaction. In light of these results it seems likely that helicase II is involved in some previously unrecognized aspect of nucleic acid metabolism, in addition to its known roles in DNA repair reactions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Resolving Holliday junctions with Escherichia coli UvrD helicase.

The Escherichia coli UvrD helicase is known to function in the mismatch repair and nucleotide excision repair pathways and has also been suggested to have roles in recombination and replication restart. The primary intermediate DNA structure in these two processes is the Holliday junction. UvrD has been shown to unwind a variety of substrates including partial duplex DNA, nicked DNA, forked DNA...

متن کامل

Escherichia coli helicase II (UvrD) protein initiates DNA unwinding at nicks and blunt ends.

The Escherichia coli uvrD gene product, helicase II, is required for both methyl-directed mismatch and uvrABC excision repair and is believed to function by unwinding duplex DNA. Initiation of unwinding may occur specifically at either a mismatch or a nick, although no direct evidence for this has previously been reported. It has recently been shown that helicase II can unwind fully duplex line...

متن کامل

A point mutation in Escherichia coli DNA helicase II renders the enzyme nonfunctional in two DNA repair pathways. Evidence for initiation of unwinding from a nick in vivo.

Biosynthetic errors and DNA damage introduce mismatches and lesions in DNA that can lead to mutations. These abnormalities are susceptible to correction by a number of DNA repair mechanisms, each of which requires a distinct set of proteins. Escherichia coli DNA helicase II has been demonstrated to function in two DNA repair pathways, methyl-directed mismatch repair and UvrABC-mediated nucleoti...

متن کامل

Mutations in motif II of Escherichia coli DNA helicase II render the enzyme nonfunctional in both mismatch repair and excision repair with differential effects on the unwinding reaction.

Site-directed mutagenesis has been employed to address the functional significance of the highly conserved aspartic and glutamic acid residues present in the Walker B (also called motif II) sequence in Escherichia coli DNA helicase II. Two mutant proteins, UvrDE221Q and UvrDD220NE221Q, were expressed and purified to apparent homogeneity. Biochemical characterization of the DNA-dependent ATPase ...

متن کامل

A Dimer of Escherichia coli UvrD is the active form of the helicase in vitro.

The Escherichia coli UvrD protein is a 3' to 5' SF1 DNA helicase involved in methyl-directed mismatch repair and nucleotide excision repair of DNA. We have characterized in vitro UvrD-catalyzed unwinding of a series of 18 bp duplex DNA substrates with 3' single-stranded DNA (ssDNA) tails ranging in length from two to 40 nt. Single turnover DNA-unwinding experiments were performed using chemical...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 86 12  شماره 

صفحات  -

تاریخ انتشار 1989